Tampilkan postingan dengan label Other. Tampilkan semua postingan
Tampilkan postingan dengan label Other. Tampilkan semua postingan

Rabu, 15 Oktober 2014

Radiasi Elektromagnetik

Radiasi elektromagnetik adalah kombinasi medan listrik dan medan magnet yang berosilasi dan merambat lewat ruang dan membawa energi dari satu tempat ke tempat yang lain. Cahaya tampak adalah salah satu bentuk radiasi elektromagnetik. Penelitian teoritis tentang radiasi elektromagnetik disebut elektrodinamik, sub-bidang elektromagnetisme.Gelombang elektromagnetik ditemukan oleh Heinrich Hertz. Gelombang elektromagnetik termasuk gelombang transversal.


Setiap muatan listrik yang memiliki percepatan memancarkan radiasi elektromagnetik. Ketika kawat (atau panghantar seperti antena) menghantarkan arus bolak-balik, radiasi elektromagnetik dirambatkan
pada frekuensi yang sama dengan arus listrik. Bergantung pada situasi, gelombang elektromagnetik dapat bersifat seperti gelombang atau seperti partikel. Sebagai gelombang, dicirikan oleh kecepatan (kecepatan cahaya), panjang gelombang, dan frekuensi. Kalau dipertimbangkan sebagai partikel, mereka diketahui sebagai foton, dan masing-masing mempunyai energi berhubungan dengan frekuensi gelombang ditunjukan oleh hubungan
Planck E = Hf, di mana E adalah energi foton, h ialah konstanta Planck — 6.626 × 10 −34 J·s — dan f adalah frekuensi gelombang. Einstein kemudian memperbarui rumus ini menjadi Ephoton = hf.

            Definisi menurut teori Maxwell atau teori-teori yang mendasari hipotesis tentang gelombang elektromagnetik adalah sebagaiberikut :
1. Hukum coulomb dan gauss ,yang menyatakan bahwa muatan listrik
statis menimbulkan medan listrik di sekitar nya.
2. Hukum Biot-Savart dan Ampere,menyatakan bahwa muatan listrikk
yang mengalir (arus listrik) menimbulkan medan magnet di sekitar nya.
3. Hukum Faraday menyatakan bahwa perubahan medan magnet dapat
menimbulkan arus listrik.
Ciri-ciri gelombang elektromagnetik        :
1. Perubahan medan listrik dan medan magnetik terjadi pada saat yang bersamaan, sehingga kedua medan memiliki harga maksimum dan minimum pada saat yang sama dan pada tempat yang sama.
2. Arah medan listrik dan medan magnetik saling tegak lurus dan keduanya tegak lurus terhadap arah rambat gelombang.
3. Dari ciri no 2 diperoleh bahwa gelombang elektromagnetik merupakan gelombang transversal.
4. Seperti halnya gelombang pada umumnya, gelombang elektromagnetik mengalami peristiwa pemantulan, pembiasan, interferensi, dan difraksi. Juga mengalami peristiwa polarisasi karena termasuk gelombang transversal.
5. Cepat rambat gelombang elektromagnetik hanya bergantung pada sifat-sifat listrik dan magnetik medium yang ditempuhnya.
Cahaya yang tampak oleh mata bukan semata jenis yang memungkinkan radiasi elektromagnetik. Pendapat James Clerk Maxwell menunjukkan bahwa gelombang elektromagnetik lain, berbeda dengan cahaya yang tampak oleh mata dalam dia punya panjang gelombang dan frekuensi, bisa saja ada. Kesimpulan teoritis ini secara mengagumkan diperkuat oleh Heinrich Hertz, yang sanggup menghasilkan dan menemui kedua gelombang yang tampak oleh mata yang diramalkan oleh Maxwell itu. Beberapa tahun kemudian Guglielmo Marconi memperagakan bahwa gelombang yang tak terlihat mata itu dapat digunakan buat komunikasi tanpa kawat sehingga menjelmalah apa yang namanya radio itu. Kini, kita gunakan juga buat televisi, sinar X, sinar gamma, sinar infra, sinar ultraviolet adalah contoh-contoh dari radiasi elektromagnetik. Semuanya bisa dipelajari lewat hasil pemikiran Maxwell.
Cepat rambat gelombang elektromagnetik :
Percobaan yang dilakukan oleh Hans Christian Oersted (1777 – 1851), menunjukkan bahwa arus listrik dapat membuat jarum kompas berubah arah. Hal ini membuktikanbahwa di sekitar arus listrik terdapat medan magnet. Kemudian, ilmuwan Prancis Andre Marie Ampere (1775 -1836), menemukan bahwa dua kawat yang bermuatan arus listrik dapat dibuat tarikmenarik atau tolak-menolak, persis seperti magnet. Pada tahun 1865, ilmuwan Skotlandia, James Clerk Maxwell (1831 – 1879), menyatakan bahwa medan listrik dan medan magnet berhubungan erat. Maxwell menyadari bahwa jika suatu arus listrik dialirkan maju-mundur, arus itu dapat menimbulkan gelombang elektromagnetik yang berubah-ubah yang memancar keluar dengan kecepatan yang sangat tinggi.
Perhitungan-perhitungannya menunjukkan bahwa gelombang elektromagnetik itu memancar pada kecepatan cahaya. Berdasarkan hal ini, Maxwell menyimpulkan bahwa cahaya itu sendiri adalah bentuk
gelombang elektromagnetik. Medan listrik tegak lurus medan magnet magnet dan tegak lurus arah gelombang

Medan listrik dan medan magnetik selalu saling tegak lurus, dan
keduanya tegak lurus terhadap arah perambatan gelombang.

Jadi, gelombang elektromagnetik merupakan gelombang transversal. Cepat rambat gelombang elektromagnetik tergantung pada permeabilitas vakum ( μo ) dan permitivitas vakum ( εo ) sesuai dengan hubungan:
 Permeabilitas vakum diketahui sebesar 4π x 10-7 Wb/A.m dan permitivitas vakum adalah 8,85 x 10-12 C/Nm2, sehingga diperoleh nilai c = 3 x 108 m/s.


Pemanfaatan Spektrum Gelombang Elektromagnetik dalam
Kehidupan
Jauh sebelum Maxwell meramalkan gelombang elektromagnetik, cahaya telah dipandang sebagai gelombang. Akan tetapi, tidak seorang pun tahu jenis gelombang apakah cahaya itu. Baru setelah adanya hasil perhitungan Maxwell tentang kecepatan gelombang elektromagnetik dan bukti eksperimen oleh Hertz, cahaya dikategorikan sebagai gelombang elektromagnetik. Tidak hanya cahaya yang termasuk gelombang elektromagnetik melainkan masih banyak lagi jenis-jenis yang termasuk gelombang elektromagnetik. Gelombang elektromagnetik telah dibangkitkan atau dideteksi pada jangkauan
frekuensi yang lebar. Jika diurut dari frekuensi terbesar hingga frekuensi terkecil, yaitu sinar gamma, sinar-X, sinar ultraviolet, sinar tampak (cahaya), sinar inframerah, gelombang mikro (radar), gelombang televisi, dan gelombang radio. Gelombang-gelombang ini disebut spektrum gelombang elektromagnetik.

1. Sinar Gamma
Sinar gamma merupakan salah satu spektrum gelombang elektromagnetik yang memiliki frekuensi paling besar atau panjang gelombang terkecil. Frekuensi yang dimiliki sinar gamma berada dalam rentang 1020 Hz sampai 1025 Hz. Sinar gamma dihasilkan dari peristiwa peluruhan inti radioaktif. Inti atom unsur yang tidak stabil meluruh menjadi inti atom unsur lain yang stabil dengan memancarkan sinar
radioaktif, di antaranya sinar alfa, sinar beta, dan sinar gamma. Di antara ketiga sinar radioaktif ini, yang termasuk gelombang elektromagnetik adalah sinar gamma. Sementara dua lainnya merupakan berkas partikel bermuatan listrik. Jika dibandingkan dengan sinar alfa dan sinar beta, sinar gamma memiliki daya tembus yang paling tinggi sehingga dapat menembus pelat logam hingga beberapa sentimeter. Sekarang, sinar gamma banyak dimanfaatkan dalam bidang kedokteran, diantaranya untuk mengobati penyakit kanker dan
mensterilkan peralatan rumah sakit. Selain itu, sinar gamma dapat digunakan untuk melihat kerusakan pada logam.

2. Sinar-X
Sinar-X, dikenal juga sebagai sinar Röntgen. Nama ini diambil dari penemunya, yaitu Wilhelm C. Röntgen (1845 – 1923). Sinar-X dihasilkan dari peristiwa tumbukan antara elektron yang dipercepat
pada beda potensial tertentu. Sinar-X digunakan dalam bidang kedokteran, seperti untuk melihat struktur tulang yang terdapat dalam tubuh manusia. Jika Anda pernah mengalami patah tulang, sinar ini dapat membantu dalam mencari bagian tulang yang patah tersebut. Hasil dari sinar ini berupa sebuah film foto yang dapat menembus hingga pada bagian tubuh yang paling dalam. Orang yang sering merokok dengan yang tidak merokok akan terlihat bedanya dengan cara menyinari bagian tubuh, yaitu paru-paru. Paru-paru orang yang merokok terlihat bercak-bercak berwarna hitam, sedangkan pada normalnya paru-paru manusia cenderung utuh tanpa bercak.
  
3. Sinar Ultraviolet
Sinar ultraviolet dihasilkan dari radiasi sinar Matahari. Selain itu, dapat juga dihasilkan dari transisi elektron dalam orbit atom. Jangkauan frekuensi sinar ultraviolet, yaitu berkisar diantara 105 hertz sampai dengan 1016 hertz. Sinar ultraviolet dapat berguna dan dapat juga berbahaya bagi kehidupan manusia. Sinar ultraviolet dapat dimanfaatkan untuk mencegah agar bayi yang baru lahir tidak kuning warna kulitnya. Selain itu, sinar ultraviolet yang berasal dari Matahari dapat merangsang tubuh manusia untuk memproduksi vitamin D yang diperlukan untuk kesehatan tulang. Sinar ultraviolet tidak selamanya bermanfaat. Lapisan ozon di atmosfer Bumi (pada lapisan atmosfer) berfungsi untuk mencegah supaya sinar ultraviolet tidak terlalu banyak sampai ke permukaan Bumi. Jika hal tersebut terjadi, akan menimbulkan berbagai penyakit pada manusia, terutama pada kulit. Sekarang, lapisan ozon telah berlubang-lubang sehingga banyak sinar ultraviolet yang tertahan untuk sampai ke permukaan Bumi. Berlubangnya lapisan ozon, di antaranya diakibatkan oleh penggunaan CFC (clorofluoro carbon) yang berlebihan, yang dihasilkan oleh kulkas atau mesin pengondisi udara (AC). Hal ini tentu saja dapat mengancam kehidupan makhluk hidup di Bumi. Oleh karena itu, diharapkan untuk mengurangi jumlah pemakaian yang menggunakan bahan CFC, seperti sekarang telah banyak mesin pendingin non CFC.

4. Sinar Tampak
Sinar tampak atau cahaya merupakan gelombang elektromagnetik yang dapat dilihat dan sangat membantu dalam penglihatan. Anda tidak akan dapat melihat apapun tanpa bantuan cahaya. Sinar tampak memiliki jangkauan panjang gelombang yang sempit, mulai dari 400 nm sampai dengan 700 nm. Sinar tampak terdiri atas tujuh spektrum warna, jika diurutkan dari frekuensi terkecil ke frekuensi terbesar, yaitu merah,jingga, kuning, hijau, biru, nila, dan ungu (disingkat mejikuhibiniu). Sinar tampak atau cahaya digunakan sebagai penerangan ketika di malam hari atau ditempat yang gelap. Selain sebagai penerangan, sinar tampak digunakan juga pada tempat-tempat hiburan, rumah sakit, industri, dan telekomunikasi.

5. Sinar Inframerah
Sinar inframerah memiliki jangkauan frekuensi antara 1011 hertz sampai 1014 hertz. Sinar inframerah dihasilkan dari transisi elektron dalam orbit atom. Benda yang memiliki temperatur yang lebih relatif terhadap lingkungannya akan meradiasikan sinar inframerah, termasuk dari dalam tubuh manusia. Sinar ini dimanfaatkan, di antaranya untuk pengindraan jarak jauh, transfer data ke komputer, dan pengendali jarak
jauh (remote control). Seorang tentara yang sedang berperang dapat melihat musuhnya dalam kegelapan dengan bantuan kacamata inframerah yang dapat melihat hawa panas dari seseorang. Dengan menggunakan kacamata ini dengan sangat mudah seseorang dapat ditemukan dalam ruangan gelap. Sinar inframerah dapat digunakan juga dalam bidang kedokteran, seperti diagnosa kesehatan. Sirkulasi darah dalam tubuh Anda dapat terlihat dengan menggunakan bantuan sinar inframerah. Selain itu, penyakit seperti kanker dapat dideteksi dengan menyelidiki pancaran sinar inframerah dalam tubuh Anda.

6. Gelombang Mikro
Gelombang mikro dihasilkan oleh rangkaian elektronik yang disebut osilator. Frekuensi gelombang mikro sekitar 1010 Hz. Gelombang mikro disebut juga sebagai gelombang radio super high frequency. Gelombang mikro digunakan, di antaranya untuk komunikasi jarak jauh, radar (radio detection and ranging), dan memasak (oven). Di pangkalan udara, radar digunakan untuk mendeteksi dan memandu pesawat terbang untuk mendarat dalam keadaan cuaca buruk. Antena radar memiliki dua fungsi, yaitu sebagai pemancar gelombang dan penerima gelombang. Gelombang mikro yang dipancarkan dilakukan secara terarah dalam bentuk pulsa. Ketika pulsa dipancarkan dan mengenai suatu benda, seperti pesawat atau roket pulsa akan dipantulkan dan diterima oleh antena penerima, biasanya ditampilkan dalam osiloskop. Jika diketahui selang waktu antara pulsa yang dipancarkan dengan pulsa yang diterima Δt dan kecepatan gelombang elektromagnetik c = 3 × 108 m/s, jarak antara radar dan benda yang dituju (pesawat atau roket), dapat dituliskan dalam persamaan berikut s = ½ c.Δt dengan: s = jarak antara radar dan benda yang dituju (m), c = kecepatan gelombang elektromagnetik (3 × 108 m/s), dan Δt = selang waktu (s). Angka 2 yang terdapat pada Persamaan muncul karena pulsa melakukan dua kali perjalanan, yaitu saat dipancarkan dan saat diterima. Saat ini radar sangat membantu dalam pendaratan pesawat terbang ketika terjadi cuaca buruk atau terjadi badai. Radar dapat berguna juga dalam mendeteksi adanya pesawat terbang atau benda asing yang terbang memasuki suatu wilayah tertentu.

7. Gelombang Radio
Mungkin Anda sudah tahu atau pernah mendengar gelombang ini. Gelombang radio banyak digunakan, terutama dalam bidang telekomunikasi, seperti handphone, televisi, dan radio. Di antara spektrum gelombang elektromagnetik, gelombang radio termasuk ke dalam spektrum yang memiliki panjang gelombang terbesar dan memiliki frekuensi paling kecil. Gelombang radio dihasilkan oleh elektron pada kawat penghantar yang menimbulkan arus bolak-balik pada kawat. Kenyataannya arus bolak-balik yang terdapat pada kawat ini, dihasilkan oleh gelombang elektromagnetik. Gelombang radio ini dipancarkan dari antena pemancar (transmitter) dan diterima oleh antena penerima (receiver). Jika dibedakan berdasarkan frekuensinya, gelombang radio dibagi menjadi beberapa band frekuensiJika dilihat dari perambatannya, gelombang radio yang dipancarkan oleh antena pemancar sebagian dipantulkan oleh lapisan ionosfer dan
sebagian lagi diteruskan.


 Pemanfaatan gelombang elektromagnetik
1) Gelombang radio (MF dan HF)
-Untuk komunikasi radio(memanfaatkan sifat gelombang MF dan HF yang dapat dipantulkan oleh lapisan ionosfer, hingga dapat mencapai tempat yang jauh)
2) Gelombang radio (UHF dan VHF)
-Untuk komunikasi satelit( memanfaatkan sifat gelombang UHF dan VHF yang dapat menembus lapisan atmosfer(ionosfer), hingga dapat mencapai satelit)
3) Gelombang Mikro
-Untuk pemanas microwave
-Untuk komunikasi RADAR (Radio Detection and Ranging)
-Untuk menganalisa struktur atomik dan molekul
-Dapat digunakan untuk mengukur kedalaman laut
-Digunakan pada rangkaian Televisi
-Gelombang RADAR diaplikasikan untuk mendeteksi suatu objek, memandu pendaratan pesawat
terbang, membantu pengamatan di kapal laut dan pesawat terbang pada malam hari atau cuaca
kabut, serta untuk menentukan arah dan posisi yang tepat.
4) Sinar Inframerah
-Untuk terapi fisik, menyembuhkan penyakit cacar dan encok (physical therapy)
-Untuk fotografi pemetaan sumber daya alam, mendeteksi tanaman yang tumbuh di bumi dengan detail
-Untuk fotografi diagnosa penyakit
-Digunakan pada remote control berbagai peralatan elektronik, alarm pencuri
-Mengeringkan cat kendaraan dengan cepat pada industri otomotif
-Pada bidang militer,dibuat teleskop inframerah yang digunakan melihat di tempat yang gelap atau berkabut.
-Sinar infra merah dibidang militer dimanfaatkan satelit untuk memotret permukaan bumi
meskipun terhalang oleh kabut atau awan.
5) Sinar tampak
-Membantu penglihatan mata manusia
-Salah satu aplikasi dari sinar tampak adalah penggunaan sinar laser dalam serat optik pada
bidang telekomunikasi.
6) Sinar ultraviolet
-Untuk proses fotosintesis pada tumbuhan
-Membantu pembentukan vitamin D pada tubuh manusia
-Dengan peralatan khusus dapat digunakan untuk membunuh kuman penyakit, menyucihamakan ruangan operasi rumah sakit berikut instrumen-instrumen pembedahan
-Untuk memeriksa keaslian tanda tangan di bank-bank
7) Sinar X (Sinar Rontgen)
-Dimanfaatkan di bidang kesehatan kedokteran untuk memotret organ-organ dalam tubuh (tulang), jantung, paru-paru, melihat organ dalam tanpa pembedahan, foto Rontgen
-Untuk analisa struktur bahan / kristal
-Mendeteksi keretakan / cacat pada logam
-Memeriksa barang-barang di bandara udara / pelabuhan
8) Sinar gamma
-Dimanfaatkan dunia kedokteran untuk terapi kanker
-Dimanfaatkan untuk sterilisasi peralatan rumah sakit
-Untuk sterilisasi makanan, bahan makanan kaleng
-Untuk pembuatan varietas tanaman unggul tahan penyakit dengan produktivitas tinggi
-Untuk mengurangi populasi hama tananaman (serangga)
-Untuk medeteksi keretakan /cacat pada logam (seperti kegunaan sinar X juga)
-Untuk sistem perunut aliran suatu fluida (misalnya aliran PDAM), mendeteksi kebocoran
Bahaya-bahaya yang bisa ditimbulkan gelombang elektromagnetik
1) Dapat menyebabkan kanker kulit (Sinar ultraviolet)
2) Dapat menyebabkan katarak mata(Sinar ultraviolet)
3) Dapat menyebabkan rendahnya produk ganggang (Sinar ultraviolet)
4) Dapat menghitamkan warna kulit (Sinar ultraviolet)
5) Dapat melemahkan sistem kekebalan tubuh (Sinar ultraviolet)
6) Dapat menyebabkan kemandulan (Sinar gamma)
7) Dapat menyebabkan kerusakan sel/jaringan hidup manusia (Sinar X dan terutama sinar
gamma

Minggu, 05 Oktober 2014

Ilmuwan Fisika

      1 . ALLESANDRO VOLTA,ILMUWAN PENEMU BATERAI



         Alessandro Giuseppe Antonio Anastasio Volta (18 Februari 1745 - 5 Maret 1827) adalah seorang fisikawan Italia. Ia terutama dikenal karena mengembangkan baterai pada tahun 1800. Ia melanjutkan pekerjaan Luigi Galvani dan membuktikan bahwa teori Galvani yaitu efek kejutan kaki kodok adalah salah. Secara fakta, efek ini muncul akibat 2 logam tak sejenis dari pisau bedah Galvani. Berdasarkan pendapat ini, Volta berhasil menciptakan Baterai Volta (Voltac Pile). Atas jasanya, satuan beda potensial listrik dinamakan Volt.





2   2 . ALBERT EINSTEN,ILMUWAN TERBESAR ABAD 20


    
         Albert Einstein (14 Maret 1879–18 April 1955) adalah seorang ilmuwan fisika teoretis yang dipandang luas sebagai ilmuwan terbesar dalam abad ke-20. Dia mengemukakan teori relativitas dan juga banyak menyumbang bagi pengembangan mekanika kuantum, mekanika statistik, dan kosmologi. Dia dianugerahi Penghargaan Nobel dalam Fisika pada tahun 1921 untuk penjelasannya tentang efek fotoelektrik dan "pengabdiannya bagi Fisika Teoretis".

Setelah teori relativitas umum dirumuskan, Einstein menjadi terkenal ke seluruh dunia, pencapaian yang tidak biasa bagi seorang ilmuwan. Di masa tuanya, keterkenalannya melampaui ketenaran semua ilmuwan dalam sejarah, dan dalam budaya populer, kata Einstein dianggap bersinonim dengan kecerdasan atau bahkan jenius. Wajahnya merupakan salah satu yang paling dikenal di seluruh dunia.

Pada tahun 1999, Einstein dinamakan "Tokoh Abad Ini" oleh majalah Time. Kepopulerannya juga membuat nama "Einstein" digunakan secara luas dalam iklan dan barang dagangan lain, dan akhirnya "Albert Einstein" didaftarkan sebagai merk dagang. Untuk menghargainya, sebuah satuan dalam fotokimia dinamai einstein, sebuah unsur kimia dinamai einsteinium, dan sebuah asteroid dinamai 2001 Einstein.

3 . JAMES CLERK MAXWELL

 


Biografi James Clerk Maxwell

    James Clerk Maxwell adalah salah satu Master di bidang fisika, karyanya yang luar biasa terbentang luas bahkan diluar bidang elektromagnetika dan termodinamika, namun demikian hanya sedikit penghargaan yang diberikan atas konstribusinya di banyak bidang sain. 
Lahir di Edinburg, Skotlandia pada tahun 1831, Maxwell besar di Glenlair, kediaman ayahnya di barat daya skotlandia. Karya-karyanya yang luar biasa, baik itu dalam kuantitas maupun kualitas, banyak yang kemudian menjadi dasar dari Fisika modern, misalnya dia sangat penasaran selama hidupnya dengan color vision dan kemudian menjadi orang pertama yang menduga kalau mata manusia itu mempunyai preceptor untuk tiga warna, dia melakukan banyak percobaan untuk membuktikan teorinya ini, dan membawa pada penemuan foto berwarna yang pertama di dunia pada tahun 1861.



4 . Max Planck





         Max Planck (1858-1947), ilmuwan fisika teori Jerman, yang mencetuskan gagasan awal tentang teori kuantum. Ini lahir dari upayanya untuk menjelaskan teka-teki fisika yang berkaitan dengan pancaran tenaga (energi) gelombang elektromagnet oleh benda (hitam) panas. Pemecahannya ia temukan pada 1901 dengan anggapan bahwa "tenaga gelombang elektromagnet dipancarkan dan diserap bahan dalam bentuk catu-catu tenaga (diskrit) yang sebanding dengan frekuensi gelombang elektromagnet". 
Catu tenaga ini disebutnya kuanta (latin: sekian banyak: kuantum, bentuk tunggalnya). Dengan demikian, tahun 1901 dicatat sebagai awal bergilirnya bola teori kuantum. Namun, para fisikawan seangkatannya memandang gagasan Planck ini tidak mempunyai makna fisika yang jauh melainkan sekadar sebagai suatu kiat matematika belaka. 
Empat tahun kemudian, pemuda Albert Einstein (1879-1955) mencatat dirinya sebagai orang pertama yang menerapkan gagasan Planck lebih jauh dalam fisika. Salah satunya, berkaitan dengan "efek fotolistrik", yaitu teka-teki terbebaskannya elektron-elektron dari permukaan logam bila disinari cahaya (gelombang elektromagnet).



5 . NICOLAUS COPERNICUS 1473-1543




         Astronom (ahli perbintangan) berkebangsaan Polandia yang bernama Nicolaus Copernicus (nama Polandianya: Mikolaj Kopernik), dilahirkan tahun 1473 di kota Torun di tepi sungai Vistula, Polandia. Dia berasal dari keluarga berada. Sebagai anak muda belia, Copernicus belajar di Universitas Cracow, selaku murid yang menaruh minat besar terhadap ihwal ilmu perbintangan. Pada usia dua puluhan dia pergi melawat ke Italia, belajar kedokteran dan hukum di Universitas Bologna dan Padua yang kemudian dapat gelar Doktor dalam hukum gerejani dari Universitas Ferrara. Copernicus menghabiskan sebagian besar waktunya tatkala dewasa selaku staf pegawai Katedral di Frauenburg (istilah Polandia: Frombork), selaku ahli hukum gerejani yang sesungguhnya Copernicus tak pernah jadi astronom profesional, kerja besarnya yang membikin namanya melangit hanyalah berkat kerja sambilan. Selama berada di Italia, Copernicus sudah berkenalan dengan ide-ide filosof Yunani Aristarchus dari Samos (abad ke-13 SM). Filosof ini berpendapat bahwa bumi dan planit-planit lain berputar mengitari matahari. Copernicus jadi yakin atas kebenaran hipotesa “heliocentris” ini, dan tatkala dia menginjak usia empat puluh tahun dia mulai mengedarkan buah tulisannya diantara teman-temannya dalam bentuk tulisan-tulisan ringkas, mengedepankan cikal bakal gagasannya sendiri tentang masalah itu. Copernicus memerlukan waktu bertahun-tahun melakukan pengamatan, perhitungan cermat yang diperlukan untuk penyusunan buku besarnya De Revolutionibus Orbium Coelestium (Tentang Revolusi Bulatan Benda-benda Langit), yang melukiskan teorinya secara terperinci dan mengedepankan pembuktian-pembuktiannya. Di tahun 1533, tatkala usianya menginjak enam puluh tahun, Copernicus mengirim berkas catatan-catatan ceramahnya ke Roma. Di situ dia mengemukakan prinsip-prinsip pokok teorinya tanpa mengakibatkan ketidaksetujuan Paus. Baru tatkala umurnya sudah mendekati tujuh puluhan, Copernicus memutuskan penerbitan bukunya, dan baru tepat pada saat meninggalnya dia dikirimi buku cetakan pertamanya dari si penerbit. Ini tanggal 24 Mei 1543. Dalam buku itu Copernicus dengan tepat mengatakan bahwa bumi berputar pada porosnya, bahwa bulan berputar mengelilingi matahari dan bumi, serta planet-planet lain semuanya berputar mengelilingi matahari. Tapi, seperti halnya para pendahulunya, dia membuat perhitungan yang serampangan mengenai skala peredaran planet mengelilingi matahari. Juga, dia membuat kekeliruan besar karena dia yakin betul bahwa orbit mengandung lingkaran-lingkaran. Jadi, bukan saja teori ini ruwet secara matematik, tapi juga tidak betul. Meski begitu, bukunya lekas mendapat perhatian besar. Para astronom lain pun tergugah, terutama astronom berkebangsaan Denmark, Tycho Brahe, yang melakukan pengamatan lebih teliti dan tepat terhadap gerakan-gerakan planet. Dari data-data hasil pengamatan inilah yang membikin Johannes Kepler akhirnya mampu merumuskan hukum-hukum gerak planet yang tepat. 



6 . Duc Prinz Louis de Broglie 





         Louis Victor Pierre Raymon de Broglie lahir pada 15 Agustus 1892 di Dieppe, Perancis. Keturunan de Broglie, yang berasal dari Piedmont, Italia barat laut cukup dikenal dalam sejarah Perancis karena mereka telah melayani raja-raja Perancis baik dalam perang dan jabatan diplomatik selama beratus tahun. 
Pada 1740, Raja Louis XI mengangkat salah satu anggota keluarga de Broglie, Francois Marie (1671-1745) sebagai Duc (seperti Duke di Inggris), suatu gelar keturunan yang hanya disandang oleh anggota keluarga tertua. Putra Duc pertama ini ternyata membantu Austria dalam Perang Tujuh Tahun (1756-1763). Karena itu, Kaisar Perancis I dari Austria menganugerahkan gelar Prinz yang berhak disandang seluruh anggota keluarga de Broglie. 
            Dengan meninggalnya saudara tertua Louis, Maurice, juga fisikawan (eksperimen), pada 1960, maka Louis serempak menjadi Duc Perancis (ke-7) dan Prinz Austria. 
          Louis mulanya belajar pada Lycee Janson de Sailly di Paris dan memperoleh gelar dalam sejarah pada 1909. Ia menjadi tertarik pada ilmu pengetahuan alam karena katanya, "terpengaruh oleh filsafat dan buku-buku Henry Poincare (1854-1912)", matematikawan besar Perancis.


7 . ERWIN RUDOLF JOSEF ALEXANDER SCHRODINGER



         Erwin Rudolf Josef Alexander Schrödinger (1887-1961) ialah fisikawan Austria. Dilahirkan di Wina, Austria-Hongaria. Ibunya berasal dari Inggris dan ayahnya berasal dari Austria. Ia memperoleh gelar doktor di kota itu di bawah bimbingan mantan murid Ludwig Boltzmann.
Selama PD I, ia menjadi perwira artileri. Setelah perang ia mengajar di Zurich, Swiss. Di sana, ia menangkap pengertian Louis Victor de Broglie yang menyatakan bahwa partikel yang bergerak memiliki sifat gelombang dan mengembangkan pengertian itu menjadi suatu teori yang terperinci dengan baik. Setelah ia menemukan persamaannya yang terkenal, ia dan ilmuwan lainnya memecahkan persamaan itu untuk berbagai masalah; di sini kuantisasi muncul secara alamiah, misalnya dalam masalah tali yang bergetar. Setahun sebelumnya Werner Karl Heisenberg telah mengemukakan formulasi mekanika kuantum, namun perumusannya agak sulit dipahami ilmuwan masa itu. Schrödinger memperlihatkan bahwa kedua formulasi itu setara secara matematis.
Schrödinger menggantikan Max Planck di Berlin pada 1927, namun pada 1933, ketika Nazi berkuasa, ia meninggalkan Jerman. Dalam tahun itu ia menerima Hadiah Nobel Fisika bersama dengan Dirac. Pada 1939 sampai 1956 ia bekerja di Institute for Advanced Study di Dublin, lalu kembali ke Austria.

8 . GALILEO GALILEI..Bapak Astronomi dunia

           
            (1564-1642)

          Ilmuwan Itali besar ini mungkin lebih bertanggung jawab terhadap perkembangan metode ilmiah dari siapa pun juga. Galileo lahir di Pisa, tahun 1564. Selagi muda belajar di Universitas Pisa tetapi mandek karena urusan keuangan. Meski begitu tahun 1589 dia mampu dapat posisi pengajar di universitas itu. Beberapa tahun kemudian dia bergabung dengan Universitas Padua dan menetap di sana hingga tahun 1610. Dalam masa inilah dia menciptakan tumpukan penemuan-penemuan ilmiah.

Penemuan Galileo yang paling masyhur adalah di bidang astronomi. Teori perbintangan di awal tahun 1600-an berada dalam situasi yang tak menentu. Terjadi selisih pendapat antara penganut teori Copernicus yang matahari-sentris dan penganut teori yang lebih lama, yang bumi-sentris. Sekitar tahun 1609 Galileo menyatakan kepercayaannya bahwa Copernicus berada di pihak yang benar, tetapi waktu itu dia tidak tahu cara membuktikannya. Di tahun 1609, Galileo dengar kabar bahwa teleskop diketemukan orang di Negeri Belanda. Meskipun Galileo hanya mendengar samar-samar saja mengenai peralatan itu, tetapi berkat kegeniusannya dia mampu menciptakan sendiri teleskop. Dengan alat baru ini dia mengalihkan perhatiannya ke langit dan hanya dalam setahun dia sudah berhasil membikin serentetan penemuan besar.

 9 . GEORGE SIMON OHM





Georg Simon Ohm (16 Maret 1789 – 6 Juli 1854) adalah seorang fisikawan Jerman yang banyak mengemukakan teori di bidang elektrisitas. Karyanya yang paling dikenal adalah teori mengenai hubungan antara aliran listrik, tegangan, dan tahanan konduktor di dalam sirkuit, yang umum disebut Hukum Ohm.

Biografi
Georg Ohm dilahirkan dari pasangan Johann Wolfgang Ohm, seorang tukang kunci, dan Maria Elizabeth Beck, seorang penjahit. Walaupun ayahnya hanya berprofesi sebagai tukang kunci, namun dia mampu memberikan anak-anaknya pendidikan yang tinggi melalui ajarannya sendiri. Sebenarnya Georg Ohm terlahir sebagai 7 bersaudara, namun hanya 3 yang bertahan melewati masa kecilnya, yaitu Georg, Martin (matematikawan terkenal), dan Elizabeth Barbara. Pada tahun 1805, Ohm masuk ke Universitas Erlangen namun keluar di semester ketiga dan kemudian pergi mengajar matematika di sekolah Gottstadt bei Nydaud, Swiss. Georg Ohm meninggalkan sekolah tersebut pada Maret 1809 untuk menjadi guru privat di Neuchâtel. Atas nasihat dari Karl Christian von Langsdorf, dia kembali melanjutkan studi di bidang matematika dan pada April 1811, dia kembali ke Universitas Erlangen.
Penemuan
Naskah ilmiah yang pertama kali dipublikasikan oleh Ohm berisi tentang pemeriksaan penurunan gaya elektromagnetik yang dihasilkan oleh suatu kawat yang diperpanjang ukurannya. Naskah tersebut memperlihatkan hubungan matematis yang murni berdasarkan pada eksperimen yang dilakukannya. Setahun kemudian, pada 1826, Ohm mempublikasikan dua naskah ilmiah yang memberikan gambaran tentang konduksi model sirkuit yang didasarkan oleh studi Fourier tentang konduksi panas. Di dalamnya, dia juga mengajukan suatu teori untuk menerangkan tentang elektrisitas galvanik. Naskah kedua yang ditulisnya pada tahun tersebut memuat langkah awal dari teori komprehensif yang berperan untuk mendukung penerbitan bukunya yang terkenal berisi hukum Ohm (1827).

 10 . GUSTAV ROBERT KIRCHHOFF



          
         Gustav Robert Kirchhoff (12 Maret, 1824 – 17 Oktober , 1887), adalah seorang fisikawan Jerman yang berkontribusi pada pemahaman konsep dasar teori rangkaian listrik, spektroskopi, dan emisi radiasi benda hitam yang dihasilkan oleh benda-benda yang dipanaskan. Dia menciptakan istilah radiasi "benda hitam" pada tahun 1862. Terdapat 3 konsep fisika berbeda yang kemudian dinamai berdasarkan namanya, "hukum Kirchhoff", masing-masing dalam teori rangkaian listrik, termodinamika, dan spektroskopi.
Gustav Kirchhoff dilahirkan di Königsberg, Prusia Timur (sekarang Kaliningrad, Rusia), putra dari Friedrich Kirchhoff, seorang pengacara, dan Johanna Henriette Wittke. Dia lulus dari Universitas Albertus Königsberg (sekarang Kaliningrad) pada 1847 dan menikahi Clara Richelot, putri dari profesor-matematikanya, Friedrich Richelot. Pada tahun yang sama, mereka pindah ke Berlin, tempat dimana ia menerima gelar profesor di Breslau (sekarang Wroclaw).Dia adalah penemu pendamping dari caesium dan rubidium pada 1861 saat mempelajari komposisi kimia Matahari via spektrumnya.
Hukum Kirchoff Dalam Spektroskopi
1.     Bila suatu benda cair atau gas bertekanan tinggi dipijarkan, akan menghasilkan cahaya dengan spektrum kontinu.
2.     Bila suatu benda gas bertekanan rendah dipijarkan, akan menghasilkan cahaya dengan spektrum emisi, berupa garis-garis terang pada panjang gelombang yang diskret (pada warna tertentu) bergantung pada tingkatan energi atom-atom yang dikandung gas tersebut.
3.     Bila spektrum kontinu dilewatkan pada suatu benda gas dingin bertekanan rendah, akan menghasilkan cahaya dengan spektrum serapan, berupa garis-garis gelap pada panjang gelombang yang diskret bergantung pada tingkatan energi atom-atom yang dikandung gas dingin tersebut.